

(Government Aided Autonomous Institute)

ENDSEM/RE-EXAMINATION Program: CIVIL

Munshi Nagar, Andheri (W) Mumbai - 400058

MAY) JUNE 2025 Duration: 03 Hours

Maximum Points: 100

Semester: IV 13/2/20

S.Y.D. Fell (C)

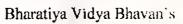
Course Name: Probability Statistics & OR

Course Code: BS-BTC401

Attempt any five out of seven questions

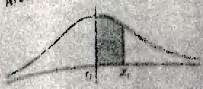
Use of scientific calculator is allowed.

Q N O					QUE	STIO	N					POI NT S	CO	B	Mod ule no.
Q 1a	The ex	kperime	nt is 1	epeat	ed 128	times	and fo	llowin	ng distri	bution is obtair	ied.	10	1	2	3
)	No.c) -	1	2	3	4	5	6	7	Total					
	Freq ncy		6	19	35	30	23	7	1	128					
	Fit a l	Binomia	l dist	ributi	on if th	ne natu	re of c	oins is	unkno	wn.					
Q 1		ards are o				isly fror	n a wel	l – shu	ffled de	ck of 52 cards. C	ompute the	10	1	2	4
b)															
Q 2	If z =	$ax + by$ $\sigma_{2}^{2} = 8$						een x	and y s	how that		10	2	2	1
a)	Furthe	$\mathbf{o}_{\mathbf{z}} = \mathbf{z}$		+00	y + 28	ioro _x o	у								
		$r = \frac{\sigma_x^2}{\sigma_x^2}$		$^2-\sigma^2$	x-y										
				. ,											
										nd x – y respec					
Q 2	i		_			_				mic conditions. I nomic conditions		10	3	2	5
b)	of i.Q.					<u> </u>									
		Econor	nic					I.Q.							
		Conditi	ons	ŀ	ligh			Me	dium	Lov	W				
		Rich		1	L60			300	<u> </u>	14)				


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai —400058

	Poor	140	100	160			T		
Q 3a	Show that the con	relation coefficient r l	ies between -1 and 1.			10	2	2	1
Q 3 b)	are normally distr	ributed with means 51	udents in mathematics, 53 and 46 with standar aring total marks (i) 18	rd deviations	15,12,16	10	1	5	4
Q 4 a)	Verify whether t	the following function $= \frac{1}{2} e^{- x }, -\infty \prec x \prec \infty$	ns can be looked upo	on as probabi	lity density	10	1	3	4
Q 4 b)	be appointed as a Probability that re chancellor are 0.3 promoted in the u	vice chancellor of a unesearch is promoted by ,0.7 7 0.8 respectively	itician, a businessman niversity are 0.50,0.30 these people if they are. Determine the probabresearch is promoted inician.	& 0.20 respect re appointed a bility that rese	etively. s vice arch is	10	1	2	2
Q 5 a)	In an examination in placed in lst,lind or 60% and between 3 marks. It is noticed	t is laid down that a stu Illrd division according 30% & 45% respectively from the result that 10	dent passes if he secure as he secures 60% or m He gets distinction in ca 0% of the students failed te the percentage of stu	ore marks, bet ase he secures t I in the examin	ween 45% & 30% or more ation where	10	1	2	
Q						10	2	2	1
5 b)	customers.Althou time required to u within a territory Customer 1	gh one cost clearly rel nload the cases of soft and the delivery time a No. of cases 52	mpany wished to devel ates to travel time with drink at the delivery p and the number of case Delivery tim	nin a particular point.A sample s delivered we	route, anothe of 20 custo	er vari mers v	able vas s	cos elec	reflects ted from
	3	73	34.8						
ŀ	4	85	37.8						
	5	95	37.8						
		i 103	1 20 7					,	
	6	103	39.7						



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

	9		14	43		44.2	2				1		
15	10	7		57		47.	 [
•	11		16	61		43.0)						
	12		18	84		49.4	1						}
	13			02		57.2	2						
	14			18		56.8							
	15			43		60.6					i	}	
	16			54		61.2					1		
	17			67		58.2							
	18			75		63.							į
	19			87	·····	65.6							
	20			98		67.3							
	1 '	e Regress	-			omer	who is	receiving 150 cases					
Q 6 a)	of soft d	rink. ts of six r mly chose	andoml	y chos ers ar	sen sa e;61,6	ilors a 2,65,6	re in in 6,69,69	ches;63,65,68,69,71 & 72.The he	_	10	3	3	5
6	of soft de The heighten rando data that in a precistarget.Two	rink. ts of six remly chose the soldier ion bomb o direct hi	andomlen soldies on an	y chosers are avera	sen sa e;61,6 age are re Is a d to de	ilors a 2,65,6 taller 50% c	re in in 6,69,69 than sa hance t	ches;63,65,68,69,71 & 72.The he	t of this	10	3	3	3
6 a) Q 6	of soft description of sof	ts of six remits chose the soldier ion bombo direct his direct his chares of a	andomlen soldies on an ing attacts are relationst 9 compado 68.	y chosers are averack the equire 99% change or	sen sa re;61,6 age are re Is a d to de nance	ilors a 2,65,6 taller 50% c estroy of dest	re in in 6,69,69 than so hance the the tar croying ays in a	ches;63,65,68,69,71 & 72.The he 7,70,71,72&73.Discuss in the light ailors that any one bomb will strike the get completely.How many bombs the target?	must				
6 a) Q 6 b) Q 7a)	of soft decided and that that the decided are the decided are decided as th	ts of six remity chose the soldier ion bomb o direct hired to give a shares of a scuss whe	andomlen soldies on an ing attacts are relateast 9 acompa d 68. ther the	y chosers are averack the equire 99% change or	sen sa re;61,6 age are re Is a d to de nance n differ	ilors a 2,65,6 taller 50% c estroy of dest	re in in 6,69,69 than so hance the the tar croying ays in a	ches;63,65,68,69,71 & 72.The he 0,70,71,72&73.Discuss in the light ailors that any one bomb will strike the get completely.How many bombs the target? month were found to be 66, 65,	must	10	3	3	3
6 a) Q 6 b) Q 7a)	of soft decided and that that the decided are the decided are decided as th	ts of six remly chose the soldier ion bomb o direct his direct his chares of a 63, 64 and scuss whe	andomlen soldies on an ing attacts are reatleast 9 a compa d 68. ther the	y chosers are averack the equire 99% chany or e price	sen sa re;61,6 age are re Is a d to de nance n differ e of sha	ilors a 2,65,6 taller 50% c estroy of dest rent da ares to	re in in 6,69,69 than so the tar croying ays in a be 65.	ches;63,65,68,69,71 & 72.The he 7,70,71,72&73.Discuss in the light ailors that any one bomb will strike the get completely.How many bombs the target?	must	10	1	3	3
6 a) Q 6 b) Q 7a)	of soft decided and that that the decided are the decided are decided as the decided are decided as the decided are decided are decided as the decided are d	ts of six remity chose the soldier ion bomb o direct hired to give a shares of a scuss whe	andomlen soldies on an ing attacts are relateast 9 acompa d 68. ther the	y chosers are averack the equire 99% change or	sen sa re;61,6 age are re Is a d to de nance n differ	ilors a 2,65,6 taller 50% c estroy of dest	re in in 6,69,69 than so hance the the tar croying ays in a	ches;63,65,68,69,71 & 72.The he 0,70,71,72&73.Discuss in the light ailors that any one bomb will strike the get completely.How many bombs the target? month were found to be 66, 65,	must	10	3	3	3
6 a) Q 6 b) Q 7a)	of soft decided and that that the decided are the decided are decided as the decided are decided as the decided are decided are decided as the decided are d	ts of six remly chose the soldier ion bomb o direct his direct his chares of a 63, 64 and scuss whe	andomlen soldies on an ing attacts are reatleast 9 a compa d 68. ther the	y chosers are averack the equire 99% chany or e price	sen sa re;61,6 age are re Is a d to de nance n differ e of sha	ilors a 2,65,6 taller 50% c estroy of dest rent da ares to	re in in 6,69,69 than so the tar croying ays in a be 65.	ches;63,65,68,69,71 & 72.The he 0,70,71,72&73.Discuss in the light ailors that any one bomb will strike the get completely.How many bombs the target? month were found to be 66, 65,	must	10	3	3	3

Ares Under Standard Normal Curso

The table gives the eres under the exablerd normal curve from z=0 to $z=z_1$ which is the probability that z will be between z=0 and $z=z_1$.

,	00	.01	02	.03	.04	.08	.06	.07	.60.	.00
0.0	0000	0040	0800	0120	0000	0199	0239	0279	0310	0359
0.1	D398	0438	.0478	.0517	0557	0596			7. J. H. P. J.	0753
0.2	0793	0832	5871	.09 10	0946	0987	1026		ACCOUNT OF	1141
03	1179	1217	1255	1293	1331	1368	1406		THE PARTY OF	1517
0.4	1564	1581	1828	1664	.1700	1738	1772	1808	7000000	1879
	1916	1950	.1985	2019	.2054	2089	2123	.2157		2224
0.0	2257	2291	2324	2357	.2389	2422	.2454	.2486		2549
\$.6 ~ **	2580	2611	2642	2873	2703	2734	2764	2794	ELECTRON SERVICE	2852
5.7	2681	2910	2938	2987	2995	.3023	.3051	3078	All Districts	3133
0.6	3169	3186	3212	.3238	3264	3289	3315	.3340		3389
0.9		3438	3481	3485	3508	.3531	3554	.3577	3599	.362!
1.0	3413	3665	3886	3708	3729	3749	.3770	3790	3810	.3830
1.1	3643	3869	3888	3907	.3925	3944	3962	.3980	.3997	.4015
12	3849		4086	4082	4099	.4115	4131	.4147	.4162	.4177
1.3	4032	4049	4222	.4236	4 4	4265	4279	4292	.4306	4319
j A	4192	4207	2.71	D-3-3/6		4394	.4408	.4418	4429	4441
1.5	4332	4345	4357	4370	.4382	4505	4415	4525	.4835	4545
1.6	4452	4463	2474	4484	.4495		4608	4618	4625	.4633
1.7	4554	.4864	,4573	.4582	.4591	.4599	.4686	.4693	4699	4708
1.8	.4641	.4849	4656	4684	.4871	.4678	Sent Service	4758	.4761	.475
1.3	.4713	4719	.4726	.4732	4736	.4744	.4750	B. RES		WES.
2.0	4772	4778	4783	.4788	4793	,4798	.4803	.4808	.4812	.481
2.1	.4821	4828	4830	4834	.4838	.4842	.4846	.4850	4887	489
22	4861	.4864	.4868	.4871	4875	.4878	.4841	4884	4913	491
-	4893	4896	4898	4901	4904	.4906	.4909	4911	4934	493
2.3	(A. C. B. C.	GO BOOK OF	.4922	4925	.4927	.4929	.4931	4932	1	S. Call
2.4	.4918	4 4 3 5 5		4943	4945	.4946	4948	4949	A STATE OF THE PARTY OF THE PAR	.495
2.5	4938	4940	4941	e la le mariju	4959			4962	The second secon	498
2.5	.4953	.4955	4956			777		4972	-0.00	THE REAL PROPERTY.
2.7	4965	4966	CONTRACTOR OF THE PARTY OF THE			5-1000	-	4979	THE RESERVE OF THE PARTY OF THE	
2.8	.4974	.4975	4976	The Party of the Control of the Cont	1000				4986	.491
2.9	4981		4982					2 10 10 11 11	4990	49
3.0	4987	4987	4987	4988	.4988	450		A PARTY OF THE PERSON		

Percentage Points of X* - Dismounted

Example

For $\Phi = 10 \text{ d. o. f.}$ P $(\chi^2 > 15.99) = 0.10$

	W I	- 00	0.50	0.10	0.05	0.02	0.01
F	0=.99	0.95			0.044	5.214	6.635
	000157	.00393	.455	2.706	3.841 5.991	7.824	9.210
1	0201	.103	1.386	4.605	7.815	9.837	11.341
2	115	.352	2.366	6.251	9.488	11 668	13.277
3	.297	.711	3.357	9.236	11.070	13.388	15.086
0	.554	1,145	4.351	10.645	12.592	15.033	16.812
É	.872	1.635	5.348	12.017	14.067	16.622	18.475
7	1.339	2.167	6.346	13.362	15.507	18.168	20.090
	1.646	2.733	7.344	14.684	16 919	19.679	21.666
	2.088	3.325	8.343	15.987	18.307	21 161	23.209
	2.558	3.940	9.340	10.00			
(20)	3.053	4.575	10.341	17.275	18 675	22.618	24.725
11	3.055	5.226	11.340	18.549	11.026	24.054	26.217
11	4.107	5.892	12.340	19.812	22,362	25.472	27,688
-57	4,660	6.571	13.339	21.064	23.686	提高,873	29.141
12	4.229	7.261	14.339	22.307	24.990		32,000
100	5.812	7.952	15.038	23.542	26,296	1	
17	6.408	8.672	16.338	24.769	27.587	1	
18	7.015	9.390	17.338	25.989	28.869	1	1
59	7 603	10.117	18.338	27,204	30.144	4 40 40	Law Busy
223	8,260	10.851	19.337	28.412	31.410	35.020	
			20.337	29.615	32.67	1 36.349	38,932
21	8.897	11.591	21 337		33.92		9 40289
25	9 542			1	35.17		8 41,638
23	10 196		22.337	100			0 42 980
24	10.856		23.337		27.05	1	6 44.314
25	11.524		24,337		00.00	- 1 4 00	6 45.642
26	12.198		25.336	-	45.44		10 46.963
27	12.879		26.336	22015			10 070
28	13.565	16.928	27.336		100		10 -00
29	14.256	17.708	28.336		10.7	1 7 17	22.002
104	14.953	18 493	29.336	40.256	43.1	\$ test	and the state of t
-							The state of the s

Percentage Points of t - distribution

Example

For $\Phi = 10 \text{ d. o. f.}$ P(|t| > 1.812) = 0.1

Para No.	0.20	0.10	0.05	0.02	0.01
P		6.314	12.706	31.812	63.657
1	3.078	1	4,303	6.965	9.925
2	- 888	2,920	3.182	4.541	5 841
3	1 534	2,353	2.776	3.747	4.804
4	1 535	2.132	2 571	3,365	4 632
	1.476	2.015			
8	1.040	1.945	7 447	3 141	3,71,7
7	1.415	1 995	: 365	2 944	3,499
8	1/297	860	1 306	2.890	3.555
9	1.383	1.533	2 262	2.821	3.250
10	1,372	1.912	2 72R	2,764	2 159
1 4 53		1.750	2.20:	2.718	5.106
71	1,363	1,785	2 179	2.68	3 055
12	3.350	1.771	2 160	7.650	3.008
13	1,345	1761	2 145	2.524	2 577
1-2	1:343	1,759	2_131	2.602	2.947
15			1120	2.583	2.921
18	1.337	1745	7.110	2.567	2.898
1 17	1.330	1745		2.552	2.878
1.0	1.330	1.734	2.101	2.532	
12	1.000	1729	2 093	2 528	7 215
NI I	1.5/25	1.725	2.086		
21	774	1 721	2.080	2.518	2.831
22	1 321	1.717	2.074	2.508	2 8 3 9
23	1 319	1,714	2.069	2.500	2.807
24	1 318	1 711	2 064	2.492	2 797
25	1.316	1.708	2.060	2.485	2 287
26	1.315	1.706	2.056	2.479	2 779
27	1.314	1 703	2.052	2.473	2.771
38	1313	1 704	2 048	2 457	2.7F
29	1.311		2.045	2.462	7 756
30	1.310	1.699	2.045	2,457	2740
	1				
46	1 303	1.684	2.021	2.423	2.704
60	1.296	1.671	2.000	2.390	2,680
120	1 289	1.658	1,980	2 358	2.617
-co	1 282	1.645	1.960	2.325	2.576
					-

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

MAY/JUNE 2025

ENDSEM/RE-EAMINATION Program: CIVIL S. Y. (Civu) dun IV

Duration: 03 Hours

Course Code: BS-BTC401

Maximum Points: 100

Course Name: Probability Statistics & OR

Semester: IV

Attempt any five out of seven questions

hawalla ai sataliatara

). Эи		1	QUESTION			POI NT S	CO	B L	Mod ule no.
Q1a		iomial distribution actual ones: X 0 1 £ 2 14	2 3 4	5	re the theoretical frequencies	10	1	2	3
Q1b	An urn	contains 4 whi	te and 3 red balls	s. Three balls are	drawn with replacement,	10	1	2	4
	from th	nis urn. Find μ,	σ^2 and σ for the	number of red ba	lls drawn.				
Q2 J)	Further	$\sigma_z^2 = a^2 \sigma_x^2 + b^2$ r show that $r = \frac{\sigma_x^2 + \sigma_y^2 - b^2}{2\sigma_x^2 \sigma_y^2}$	$\sigma^2 \sigma_y^2 + 2abr\sigma_x \sigma_y^2$ σ^2_{x-y}		y show that y and $x - y$ respectively	10	2	2	1
Q2 b)	A certa	ain drug is claime	ed to be effective were given the	in curing cold. It	n an experiment on 500 pers them were given sugar pills.	ons 10 The	3	2	5
		1	f this data, can it	be concluded th	at the drug and sugar pills d	iffer			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Q3		110	1	14	14 1
b)	In an examination marks obtained by students in mathematics, physics and chemistry are normally distributed with means 51,53 and 46 with standard deviations 15,12,16 respectively. Find the probability of securing total marks (i) 180 or more (ii) 90 or below	1:0	I	5	4
Q4 a)	The length of time a lady speaks on telephone is found to be a random variable with $ PDF \ f(x) = \begin{cases} Ae^{-x/5}, x \ge 0 \\ 0, x < 0 \end{cases} $ Find A and the probability that she will speak for (i) more than 10 minutes (iii) less than 5 minutes (iii) between 5.8.40 minutes (iii)	10	1	3	4
Q4 b)	than 10 minutes (ii)less than 5 minutes(iii) between 5 & 10 minutes. Of the three men, the chances that a politician, a businessman and an academician will be appointed as a vice chancellor of a university are 0.50,0.30 & 0.20 respectively. Probability that research is promoted by these people if they are	10 _	1	2	2
	appointed as vice chancellor are 0.3,0.7 7 0.8 respectively. Determine the probability that research is promoted in the university. Also find if research is promoted in the university what is the probability that the VC is an academician.				
Q5 a)	In an examination it is laid down that a student passes if he secures 30% or more marks. He is placed in lst, lind or illrd division according as he secures 60% or more marks, between 45% & 60% and between 30% & 45% respectively. He gets distinction in case he secures 80% or more marks. It is noticed from the result that 10% of the students failed in the examination where as 5% of them obtained distinction. Calculate the percentage of students placed in the second division.	10	1	2	
Q5 b)	In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of $X = 9$	10	1	2	1
	Regression equations: $8x - 10y + 66 = 0$ $40x - 18y = 214$				
	What are i.Mean, value of x and y ii.Standard deviation of y. iii.Coefficient of correlation between x and y				
Q6b)	in a precision bombing attack there is a 50% chance that any one bomb will strike the target. Two direct hits are required to destroy the target completely. How many bombs must be dropped to give atleast 99% chance of destroying the target?	10	1	3	3
Q7a)	For a random sample of 10 pigs fed diet A, the increases in weight in pounds in a certain period were 10, 6, 16, 17, 13, 12, 8, 14, 15, 9. For another random sample of 12 pigs, fed on diet B, the increase in the same period were 7, 13, 22, 15, 12, 14, 18, 8, 21, 23, 10, 17. Test whether the diets A & B differ significantly as	10	3	3	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Danka bu let					18	11	15	13	order.	1/	1		1 1	
Ranks by 1st	6	10	2	9	0	1								
judge														
lind judge	5	4	10	1	9	3	8	7	2	6				
									. ·					
ilird judge	4	8	2	10	/	5	19	7	7			ł		
		lind judge 5	lind judge 5 4	lind judge 5 4 10	lind judge 5 4 10 1 ilird judge 4 8 2 10	lind judge 5 4 10 1 9 ilird judge 4 8 2 10 7	lind judge 5 4 10 1 9 3 ilird judge 4 8 2 10 7 5	lind judge 5 4 10 1 9 3 8 illrd judge 4 8 2 10 7 5 9	lind judge 5 4 10 1 9 3 8 7 ilird judge 4 8 2 10 7 5 9 1	lind judge 5 4 10 1 9 3 8 7 2 lilird judge 4 8 2 10 7 5 9 1 3	lind judge 5 4 10 1 9 3 8 7 2 6 illrd judge 4 8 2 10 7 5 9 1 3 6	lind judge 5 4 10 1 9 3 8 7 2 6	lind judge 5 4 10 1 9 3 8 7 2 6 illrd judge 4 8 2 10 7 5 9 1 3	lind judge 5 4 10 1 9 3 8 7 2 6 illrd judge 4 8 2 10 7 5 9 1 3

BharatiyaVidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

Endsem/Repair Paper-R-23

May 2025

Max. Marks: 100

Civil Sem 12 Class: S.Y.B.Tech

Name of the Course: Water Supply Engineering

Course Code: PC BTC-406

Duration: 3 Hrs

Semester: IV

Program: B. Tech CIVIL

Instructions:

Question 1 is compulsory. Attempt any 4 of remaining 6

Draw neat sketches/diagrams wherever required in the answer sheet and upload

· Assume suitable data if necessary and state them clearly

• Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and modules of the given questions

Q1	Answer the following Questions	(20)	CO	BL
(a)	Explain the visit to Pise Panjrapole Water Treatment Plant with the flowsheet of the same the treatment flowsheet adopted with details and explanations of units and the amount in reductions at each stage.	(10)	CO1	3
(b)	You are an engineer at the Binsar Municipality. Your responsibility is to plan and design a water distribution network for a greenfield project in the region. Explain steps with figures and steps in detail how would you use QGIS, JalTantra, and EPANET to create an efficient water distribution system	(10)	CO4	4
Q2	Answer the following questions	(20)		
(a)	Classify water quality parameters. A story in London times on 28th April 2025 quoted "Boat Race Crews were warned not to throw each other into the Thames for a celebratory, or commiseratory, dip. This is because levels of pollution are at a staggering level. Testing showed levels of E coli almost three times the Environment Agency's threshold for "poor" bathing waters. Any level of E coli, given that it is a bacteria traced to sewage, is hardly welcome. It's the second year in a row there were significant such warnings. Thames Water, not exactly a trusted paragon of quality, said £1.8 billion would be committed to improve the rivers around London. Is E. Coli standard for drinking water quality as per your knowledge. If yes how is it used to decide the quality? Explain ways to improve quality of river water?	(10)	CO1	3,4
(b)	The industrial development does not happen in rural areas. Explain it in context of need of water supply schemes	(05)	CO1	4
	in context of need of water supply schemes			

	(i) Population forecasting (2) Design period			
QЗ	Answer the following questions	(20)		<u> </u>
(a)	A bell mouth canal intake is to be designed for Binsar considering population of 60,000 and water demand of 180 lpcd (a) drawing water from a canal which runs for 9 hrs a day with a depth of 2 m. Calculate head loss in intake conduit if treatment works are 0.75 km away. Consumption of the town is to be considered 130 lpcd. Assume velocity through screens and bell mouth to be less than 16cm/sec and 32 m/sec. Also draw a neat sketch of design. v=0.85 C _H R ^{0.6} 38 ^{0.54} (C _H = 130 dependent on pipe material, R is hydraulic mean depth and for circular section it is d/4; and 8 is slope of energy line or HI/L)	(10)	CO2	4
[Ъ)	Design a coagulant aided sedimentation tank for Binsar in Uttarakhand (data of Q3 (a)) with checks	(10)	CO1	
24	Answer the following questions	(20)		<u> </u>
a)	Choose the correct answer	(20) (10)	СОЗ	3
i	The surface loading rate (m ³ /m ² /d) of 5 tanks with Length= 40 m, width= 8 m and height 3 m with a flow of 30 MLD is (i) 18.75m ³ /d/m ² (ii) 37.5m ³ /d (iii)93.75m ³ /d/m ² (iv) 24.5m ³ /d/m ²	(03)	330	
1	The quantity of 75% pure alum required (per year in kgs) for treating 60 MLD of water if alum required is 30 mg/L (i) 10300 kg/year (ii) 772.9 kg/yr (ii) 7.73*105kg/yr (iv) 1.03*106kg/yr	(03)	i	
ii	Calculate lime and soda ash required to remove 138 mg/L of MgCl ₂ (i) 49.2 mg/L; 66 mg/L (ii) 107 mg/L, 153.9 mg/L (iii) 35.5 mg/L, 106 mg/L (iv) 162 mg/L, 109 mg/L	(04)	CO4	4
b)	Design a mechanical rapid mix unit for a design flow to be treated as 500 m ³ /hr. Take value of μ as 1.0087E-03Ns/m ² . AlsoCompute power requirements and give check	(5)	CO2	2
c)_	Explain with short notes (i) Ion Exchange (ii) Coagulants	(5)	CO3	2
	Annual the fallowing questions	(20)		
Q5 a)	Explain coagulation and flocculation. Design water depth for a slow mixing basin (gravity flocculator) having around the end baffles in order to treat 50 MLD. Tank is divided in two compartments by providing longitudinal partition wall and each half has a width of 8 m. Assume suitable detention times and flow velocities. Clear distance between baffles may be kept min permissible. Mention number of channels and overall length.	(10)	CO2	2-3
ъ)	Explain any two (i) tube settlers and (ii) Filter troubles (iii) Reverse osmosis	(10)	CO2	3-4
26	Answer the following questions	(20)		
a)	Design rapid sand filter for (size and underdrainage system) the population of 60,000 for Binsar town having water demand 180 lpcd. Design wash water system too	(15)	соз	3-5
b)	Ennumerate factors affecting disinfectant use and dose. Draw and explain the graph of chlorine utilization. Find chlorine consumed (chlorine dose) in kg/day and chlorine dosage in mg/L for the city of Binsar in if the residual chlorine is 1 mg/L and a chlorine demand is	(05)	CO3 ,CO 4	2-4

	40 kg/day for average flow and average water demand of 180 lpcd and population 60,000.			
Q7	Give solutions to the following problems encountered in Rural India	(20)	CO2 - CO3	3-4
(a)	The content of fluoride is 6 mg/L. What are the typical values expected for drinking water and what are the implications? Explain how will you solve this problem in remote village	(05)		
(b)	It was observed that very high odor and color is visible in one of the sources in remote village in West Bengal. How this problem could be solved in the village. Explain the processes that can be adopted for the same	(05)		
(c)	A rural well is to be disinfected. Explain the process for the same in detail	(05)		
(d)	In a far flung small town in India the only water available in sea water and ground water also has high amount of salt ingress. Which technique can be used in this town for generating drinkable water. Explain in detail with figures	(05)		

Formula sheet

" " "	Al=27; Ca=40; C=12; O=16;	WLR=Q/B
$P_n = P_o \left[1 + \frac{r}{100} \right]^n P_n = P_o + nx + \frac{n(n+1)}{2} y$	S=32 ; Cl=35.5; H=1; Na=23;	WLR= Q/2πR
100] 2, -2, 12, 12	Fe= 55.5; Mg=24; Si=14	DT= V/Q
	P	SOR= 12-20 m ³ /d/m ²
$\log_{\epsilon} \left[\frac{P_s - P}{P} \right] - \left \frac{P_s - P_o}{P} \right = -kP_s * t$	$G = \sqrt{\frac{P}{\mu * V}}$	V= 0.849 C R 0.63 S 0.54
$P \qquad P_0 \qquad S$	V μ*ν	$SOR= 24-30m^3/d/m^2$
$P_n = (P_o + n\overline{x})$		SA=volume/SOR
1		G =300-700s-1
$r = \sqrt{r_1 * r_2 * r_3 * \dots * r_n}$	μ =1.0087*10-3Ns/m ²	0.5 min to 1 min
100-160m ³ /m/d (max=200m ³ /m/d)	Q=Av	$G * t = \frac{v}{o} * \sqrt{\frac{P}{\mu V}} = \frac{\sqrt{\frac{PV}{\mu}}}{o}$
Width of tank = max 12 m		6 NAM 6
Length should not be greater than 4 B		
For circular tanks max diameter allowed		
is 60 m		
Ratio of length to diameter of lateral ≤ 60	1 9 (2 2) 12	
	$v_{s} = \frac{1}{18} \frac{g}{v} (S_{s} - 1) * d^{2}$	Q/A; Q/perimeter; Q/b;
Spacing of laterals= spacing of orifices=		V/Q
150 to 300 mm	Value of u=1.002X10-6	V= D ² (0.01 1D+0.785H)
	m ² /sec	Entire filter area
Dia of perforations 5 to 12 mm	(86)	Area of manifold= 1.5 to 2
(spacing 80 mm for 5 and 200 mm for	$v_d = \sqrt{\frac{8\beta}{f'}}(S_s - 1)dg$	times laterals
12mm)		Rate of filtration = 300 to
Total area of perforations≤ 0.5	f' = 0.025 - 0.03	500l/hr/m ²
Total c/s area of laterals	g=9.8m/s ²	Rate of filtration - 3000-
Matalana of matalana and and a const	$8\beta q(S_v-1)d$	60001/hr/m ²
Total area of perforation = 0.002 to 0.003	$v_{d} = \sqrt{\frac{8\beta g(S_{s} - 1)d}{f'}}$	Max. demand= 1.8 Q
Total area of filter	٧ ,	V. P. PV/u
		G * t = 0
		$G * t = \frac{v}{Q} * \sqrt{\frac{P}{\mu v}} = \frac{\sqrt{PV/\mu}}{Q}$

BharatiyaVidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

Endem/Reexam Paper R-23

May 2025

Max. Marks: 100

Class: S.Y.B.Tech Civu Sun

Name of the Course: Water Supply Engineering

Course Code: PC BTC-406

Duration: 3 Hrs

Semester: IV

Program: B. Tech CIVIL

miller

Instructions:

Question 1 is compulsory. Attempt any 4 of remaining 6

• Draw neat sketches/diagrams wherever required in the answer sheet and upload

· Assume suitable data if necessary and state them clearly

• Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and modules of the given questions

Q1	Answer the following Questions	(20)	CO	BL
(a)	Explain the visit to Pise Panjrapole Water Treatment Plant with the flowsheet of the same the treatment flowsheet adopted with details and explanations of units and the amount in reductions at each stage.	(10)	CO1- CO4	3
(b)	You are an engineer at the Mukteshwar Municipality. Your responsibility is to plan and design a water distribution network for a greenfield project in the region. Explain steps with figures and steps in detail how would you use QGIS, JalTantra, and EPANET to create an efficient water distribution system	(10)	CO3	3
Q2	Answer the following questions	(20)		
(a)	Draw a flowsheet for ground water treatment with details of removals of turbidity, Hardness and MPN. If there is excess of salt (NaCl) present, which steps will be taken by you to give alternative to the flowsheet of ground water. A news item of Times of India February 17 2025 quoted "The quality of water at the confluence of river Ganga and Yamuna at Prayagraj, at the ongoing Maha Kumbh, is failing to meet the primary standards for bathing. The water has high levels of faecal coliform, the Central Pollution Control Board (CPCB) informed the National Green Tribunal (NGT) on Monday (February 17). A CPCB report dated February 3 mentioned that faecal coliform levels at all monitored locations were above the permissible limit of 2,500 units per 100 ml, indicating significant sewage contamination. The issue is particularly concerning as millions of devotees take ritual baths at the Sangam, especially on auspicious days, increasing bacterial concentrations in the water". What is the issue with respect	(15)	CO1	3,

	to MPN units observed in Kumbha Water. Which test is done in lab to	1		1
	test water for E. Coli and why is it important			
(b)	Forecast population of Mukteshwar for 2050 using geometric mean and arithmetic mean method for following data	(05)		
	Year 1970 1980 1990 2000 2010			
	Population 50000 55000 64000 79000 120000			
Q3	Answer the following questions	(20)	ļ	-
(a)	A bell mouth canal intake is to be designed for Mukteshwar considering population for the year 2050 for Mukteshwar and water demand of 200 lpcd (a) drawing water from a canal which runs for 9 hrs a day with a depth of 2 m. Calculate head loss in intake conduit if treatment works are 0.75 km away. Consumption of the town is to be	(10)	CO2	4
	considered 200 lpcd. Assume velocity through screens and bell mouth to be less than 16cm/sec and 32 m/sec . Also draw a neat sketch of design. v=0.85 $C_H R^{0.6} 3S^{0.54}$ ($C_H = 130$ dependent on pipe material, R is hydraulic mean depth and for circular section it is d/4; and S is slope of energy line or $H1/L$)			
b)	Design coagulant aided sedimentation tank for Mukteshwar in Uttarakhand with checks	(10)	CO1	
Q4	Answer the following questions	(20)		-
8.	In continuous flow settling tank 3 m deep and 50 m long, what is flow velocity of water that you would recommend for effective removal of 0.02 mm particles at 25°C. The specific gravity of particles is 2.65 and vis 0.01cm ² /sec. Check scour velocity too if Beta is 0.04 and friction factor is 0.03. Take 50 cm free board (H=2.5 m)	(05)	CO2	3
b	Explain the importance of Jar Test and how is it performed	(03)	CO2	2
С	Explain the importance of MPN test and what are the indicator microorganisms	(02)	CO3	3
d	Design a mechanical rapid mix unit for a design flow to be treated as 800 m 3 /hr. Take value of μ as $1.0087E^{-03}Ns/m^2$. Compute power requirements too and give checks if required	(5)	CO2	2
e	Explain with short notes (i) Tube settlers (ii) Types of water distribution system	(5)	соз	2
Q5	Answer the following questions	(20)		
(a)	Explain coagulation and flocculation. Design water depth for a slow mixing basin (gravity flocculator) having around the end baffles in order to treat 75 MLD. Tank is divided in two compartments by providing longitudinal partition wall and each half has a width of 10 m. Assume suitable detention times and flow velocities. Clear distance between baffles may be kept min permissible. Mention number of channels and overall length.	(10)	CO2	3
(b)	Explain any two (i) Displacement efficiency (ii) Filter troubles (iii) Reverse osmosis	(10)	CO2	3- 4
		/001		-
Q6	Answer the following questions	(20)	<u> </u>	<u> </u>

(a)	Design rapid sand filter for (size and underdrainage system) for the population of 1,60,000 for Mukteshwar town having water demand 200	(15)	CO3	3- 5
(b)	ipcd. Design wash water system too Explain factors affecting disinfectant use and dose. Enlist disinfectants used in water treatment. Draw the graph of chlorine utilization. Find chlorine consumed in kg/day and chlorine dosage in mg/L for the city of Mukteshwar in if the residual chlorine is 0.4 mg/L and a chlorine demand is 1.5 mg/L and average water demand of 200 lpcd and population 1, 60,000.	(05)	CO3, CO4	2-4
		(20)	CO2-	3-
Q7	Give solutions to the following problems encountered in Rural India-	-ferol	CO3	4
(a)	The content of iron and manganese is 4 mg/ and 0.8mg/L resp. What are the typical values expected for drinking water and other types of water. What are the implications? Explain how will you solve this problem in remote village			
(b)	It was observed that very high NaCl is visible in one of the sources in remote village in Gujarat due to sea water intrusion. How this problem could be solved in the village. Explain the processes that can be adopted for the same	1		
(c)	A rural well is to be disinfected. Explain the NEERI two pot process for	(05)		
(0)	the same in detail			-
(d)	In a far flung small town in India the only water available is ground water contaminated with fluoride. Discuss two techniques that can be used to solve the problem	(05)		
<u></u>				

Formula sheet

$P_{n} = P_{o} \left[1 + \frac{r}{100} \right]^{n} P_{n} = P_{o} + n\bar{x} + \frac{n(n+1)}{2} \bar{y}$ $\log_{e} \left[\frac{P_{s} - P}{P} \right] - \left[\frac{P_{s} - P_{o}}{P_{o}} \right] = -kP_{s} * t$ $P_{n} = (P_{o} + n\bar{x})$ $r = \sqrt{r_{1} * r_{2} * r_{3} * \dots * r_{n}}$ $100 - 160 \text{ m}^{3} / \text{m} / \text{d} \text{ (max} = 200 \text{ m}^{3} / \text{m} / \text{d)}$ Width of tank = max 12 m	Al=27; Ca=40; C=12; O=16; S=32; Cl=35.5; H=1; Na=23; Fe= 55.5; Mg=24; Si=14 $G = \sqrt{\frac{P}{\mu^* V}}$ $\mu = 1.0087*10^{-3} \text{Ns/m}^2$ Q=Av Length should not be greater than 4 B For circular tanks max diameter allowed is 60 m	WLR=Q/B WLR= Q/2 π R DT= V/Q SOR= 12-20 m ³ /d/m ² V= 0.849 C R ^{0.63} S ^{0.54} SOR= 24-30m ³ /d/m ² SA=volume/SOR G =300-700s ⁻¹ 0.5 min to 1 min $G * t = \frac{V}{Q} * \sqrt{\frac{P}{\mu V}} = \frac{\sqrt{PV/\mu}}{Q}$
Ratio of length to diameter of lateral \(\le 60\) Spacing of laterals= spacing of orifices= 150 to 300 mm Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12mm) Total area of perforations \(\le 0.5 \) Total c/s area of laterals Total area of perforation = 0.002 to 0.003 Total area of filter	$v_{s} = \frac{1}{18} \frac{g}{v} (S_{s} - 1) * d^{2}$ Value of v=1.002X10 ⁻⁶ m^{2}/sec $v_{d} = \sqrt{\left(\frac{8\beta}{f'}\right)(S_{s} - 1)dg}$ $f' = 0.025 - 0.03$ $g=9.8m/s^{2}$ $v_{d} = \sqrt{\frac{8\beta g(S_{s} - 1)d}{f'}}$	Q/A; Q/perimeter; Q/b; V/Q V= D² (0.011D+0.785H) Entire filter area Area of manifold= 1.5 to 2 times laterals Rate of filtration = 300 to 5001/hr/m² Rate of filtration = 3000- 60001/hr/m² Max. demand= 1.8 Qavg

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/BE EXAMINATION: MAY/JUNE 2025

Program: B. Tech. in Civil Engineering Level 12

Duration: 3 Hours

Course Code: PC-BTC402

Maximum Points: 100

Course Name: Structural Mechanics

Semester: IV

1. Attempt any FIVE questions out of SEVEN questions.

2. Answers to all sub questions should be grouped together.

Figures to the right indicate full marks.

4. Assume suitable data if necessary and state the same clearly.

10	Spi
17/	-1

Q.No.	Questions	Points	CO	BI	Modu
Q.1(a)	A 16 m high concrete dam of trapezoidal cross section has the top and bottom widths of 4m and 15m respectively as shown in figure below The dam retains water on its vertical face to a depth of 16 m Determine the maximum and minimum stresses developed at the base of the dam. The unit weight of masonry is 24 kN/m ³ and that of water is 10 kN/m ³ .		1	4	I
	16 m				
	Using Macaulay's method only, find the slope at A and vertical deflection at C for the beam supported and loaded as shown in figure below. 80 kN 20 kN/m	10	3	3,4	5
2(a) §	State and explain Maxwell's reciprocal theorem.	05	2	2	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/DE EXAMINATION: MAY/JUNE 2025

Q.2(b)	For the frame loaded as shown in figure below	15	2	3,4	3
	a) Find the support reactions				
	b) Draw AFD, SFD & BMD				
	50kN				
	5 kN/m 5 m D				
).3(a)	Find the slope at A and vertical deflection at C for the beam supported and loaded as shown in figure below. <u>Use conjugate</u> method only.	12	3	3,4	5
	50 kN 40 kN B B A A m D 2 m				
Q.3(b)	Find the slope at C and vertical deflection at B for the beam supported and loaded as shown in figure below. <u>Use moment area method only.</u>	08	3	3,4	5
	10 kN 20 icN C 1 m 3 m				
Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the vertical deflection of joint A.	12	3	3,4	6
	3 m 30 kN				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE EXAMINATION: MAY/JUNE 2025

Q.4(b)	Find the strain energy stored in the beam shown in the figure below.	08	2	3,4	4
	A 25 kN/m 4 m B			1	
Q.5(a)	Locate the principal axes and find the principal moments of inertia for the cross section shown in figure below.	10	1	3,4	2
	10 mm				
).5(b)	The angle section with dimensions shown in the figure below (same as given in Q. 5(a)) is subjected to a hending moment of 70 kN-m at 30 degrees to the positive X axis as shown in the figure. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in the cross section. (The properties of the cross section obtained in Q5(a) can be used. No need to calculate them again.)	10	1	4	2
	80 mm Y 10 mm 130 mm 130 mm				
).6(a)	Determine the horizontal deflection of point C of the rigid jointed frame loaded as shown in figure below.	10	3	3,4	6
	50kN 2m 2m 3m 3m 3m 3m 3m 3m				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/DE EXAMINATION: MAY/JUNE 2025

Q.6(b)	Find the crippling loads using (i) Euler's and (ii) Rankine's formulae for a steel column 3.0 m long with one end fixed and the other end pinned. The cross section of the column is a symmetrical I section with the following dimensions. Top and bottom Flange width = 300 mm, Top and bottom Flange thickness = 25 mm, Depth of web = 200 mm, Thickness of web = 15 mm. Take $E = 2x10^5 \text{ N/mm}^2$, $f_c = 350 \text{ MPa}$ and Rankine's constant = 1/7000.	10	4	3,4	7
Q.7(a)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD & BMD.	12	4	3,4	3
	15 kN/m B 3m C 4m				
Q.7(b)	A column of square cross section and another column of circular cross section are made of the same material and have the same length and same cross sectional area. Each column is pinned at both the ends. Determine the ratio of the buckling load P_1 of column of square cross section to the buckling load P_2 of column of circular cross section.	05	4	3,4	7
Q.7(c)	Write the expression for strain energy stored in a member due to bending moment. Explain the terms involved in the expression.	03	2	2	4

m/9/20

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END-SEM/RE EXAMINATION: NEAT/JUNE 2025

Program: B.Tech. in Civil Engineering Across

Duration: 3 Hours

Maximum Points: 100

Course Code: PC-BTC402

Course Name: Structural Mechanics

Semester: IV

1. Attempt any FIVE questions out of SEVEN questions.

2. Answers to all sub questions should be grouped together.

3. Figures to the right indicate full marks.

4. Assume suitable data if necessary and state the same clearly.

Q.No.	Questions	Points	co	BL	Module
Q.1(a)	A masonry chimney of hollow circular cross section is of height 8m. It has an external diameter of 2.2m and internal diameter of 1.6m. It is subjected to a horizontal wind pressure of 1.5 kN/m². Determine (i) total wind force acting on the chimney. (ii) bending moment at the base of the chimney due to wind pressure. (iii) maximum and minimum stresses developed at the base of the chimney. The unit weight of masonry is 20 kN/m³.	10	1	4	1
Q.1(b)	Using Macaulay's method only, find the slope at C and vertical deflection at D for the beam supported and loaded as shown in figure below.	10	3	3,4	5
	15 kN/m 60 kN B 4 m 2 m D 2 m				
Q.2(a)	State and explain Bette's theorem.	05	2	2	4
Q. 2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD & BMD	15	2	3,4	3
	20kN/m B 4m 5 kN/m				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE EXAMINATION: MAY/JUNE 2025

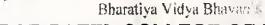
Find the slope at B and vertical deflection at C for the cantilever beasupported and loaded as shown in figure below. <u>Use conjugated method only.</u>		3	3,4	5
5 kN 3 kN 2EI EI C A 2 m B 1 m				
3(b) Find the slope at B and vertical deflection at C for the cantilever bear supported and loaded as shown in figure below. <u>Use moment are method only.</u>		3	3,4	5
5 kN/m 2EI B 1 m				
4(a) For the pin jointed frame loaded as shown in figure below, find the horizontal deflection of joint D.	ne 12	3	3,4	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END-SEM/RE EXAMINATION: MAY/JUNE 2025

Q.4(b)	Find the strain energy stored <u>due to bending moment alone</u> in the frame loaded as shown in the figure below.	08	2	3,4	4
	3 kN B 3 m C				
Q.5(a)	Locate the principal axes and find the principal moments of inertia for the cross section shown in figure below.	10	1	3,4	2
	150 mm 10 mm				
Q.5(b)	The angle section with dimensions shown in the figure below (same as given in Q. 5(a)) is subjected to a bending moment of 100 kN-m at 40 degrees to the positive X axis as shown in the figure. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in the cross section. (The properties of the cross section obtained in Q5(a) can be used. No need to calculate them again.)	10	1	4	2
	150 mm 100 kN-m 40° 100 mm				


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE EXAMINATION: MAX/JUNE 2025

Q.6(a)	Determine the vertical deflection of point C of the rigid jointed frame	10	3	3,4	6
	loaded as shown in figure below.				
	20 kN/m B V V V V V V V V V V A A				
Q.6(b)	Find the crippling loads using (i) Fuler's and (ii) Rankine's formulae for a steel column 2.5 m long with both ends pinned. The cross section of the column is a symmetrical I section with the following dimensions. Top and bottom Flange width = 140 mm, Top and bottom Flange thickness = 10 mm, Depth of web = 180 mm, Thickness of web = 12 mm. Take E = 2x10 ⁵ N/mm ² , f _c = 300 MPa and Rankine's constant = 1/7000.	10	4	3,4	7
Q.7(a)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD & BMD for members AB and BC only.	12	4	3,4	3
	20 kN/m B 4m 4m 5m D				
Q.7(b)	Find the Euler's buckling load for the structural steel column of hollow rectangular cross section with external dimensions of 100mm width by 180 mm depth and internal dimensions of 75mm width by 130 mm depth. The length of the column is 3m. The column is fixed	05	4	3,4	7
	at both the ends. Take E= 200 GPa			ļ	

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/HE-EXAM EXAMINATION -MAY / JUNE-2025

Program: Civil Engineering

8. 4. Ce) sem [V

Duration: 3 hours

Course Code: PC-BTC403

Maximum Points: 100

Course Name: Surveying & Geomatics

Semester: IV

2/9/25

Instructions:

1. Question No. 1 is compulsory.

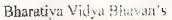
2. Attempt any four questions from the remaining six questions.

3. Begin the answer to each main question on a new page.

4. Support your answers with appropriate figures and tables, wherever applicable.

5. Do not use pencil for writing answers. Only pen is permitted.

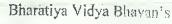
	no.	Quarties	D-1-4		TOT
1	HO.	Question A First the second of	Points	СО	BL
		A. Explain the purpose of providing vertical curves in highway or railway alignment. Illustrate your answer with a neat sketch showing the key elements of a vertical curve. (4)	20	1,2,3,4	1,2,3
		B. Explain the difference between surface datum and earth centered earth fixed (ECEF) datum and state its region of applicability. (3)			
		C. Define triangulation and trilateration. State a key difference between them. (3)			
		D. An aerial photograph was taken from a flying height of 6200 m above mean	:		
		sea level using a camera with a focal length of 152 mm. A point on the			
		photograph lies 80 mm from the principal point. The elevation of the ground			
		point is 450 m above mean sea level. Calculate the relief displacement of the point. (3)			
		E. Give the names of the navigation satellite system of United States., India, and			
		Russia. (3)			
		F. List the major components of a Geographic Information System. (2)			
		G. Explain what is meant by the term 'setting out" in construction survey (2)			
2	A	A parabolic vertical curve is to be set out connecting two uniform grades of +0.8% and -0.9%. The chainage and reduced level of point of intersection are 1664m and 238.755m respectively. The rate of change of grade is 0.05% per chain of 20m.	20	1,2,3,4	1,2,3
		Calculate the length of the curve (1), chainages at the tangent points (1), and reduced			
		level of the various station pegs till the apex of the curve along with the necessary			
		check (5). Use Tangent correction method. Draw proper sketch of the vertical curve showing all elements (1).	•		
	В	Explain the principle of triangulation and state and explain the basic requirements			
		for forming a well-conditioned triangle. (6)			
	C	Explain the principles of remote sensing and explain the significance of			
		electromagnetic radiation (EMR) and wavelength bands in remote sensing. Also,			
		briefly describe two applications of remote sensing. (6)			
			<u></u>		


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/BE-EXAM EXAMINATION -MAY / JUNE 2025

3	A	A transition curve is to be provided for the state of the			
•		A transition curve is to be provided for a design speed of 80 km/h and a circular curve radius of 400 m. Calculate the least of the second sec	20	1,2,3,4	1,2,3
		curve radius of 400 m. Calculate the length of the transition curve assuming a rate			İ
		of change of centrifugal acceleration as 0.6 m/s ³ . Also, find the shift required for the			
	В	curve. Draw a proper sketch showing all elements of transition curve. (6)]		
	"	Define geodetic datum and briefly describe the difference between a local datum and	ł		
	C	a global datum with proper examples. (4)			
	·	To determine the elevation of the top (Point Q) of the signal on a hill, observations			
		were made from two instrument stations, P and R at a horizontal distance 100m apart,			
		the station P and R being in the line with Q. the angles of elevation of Q at P and R			
		were 28°42' and 18°6' respectively. The staff reading on the benchmark (BM) of			
		elevation 287.28m were respectively 2.870m and 3.750m when the instrument was			
İ		at P and at R, the telescope being horizontal. Determine the elevation of the foot of			
	D	the signal if the height of the signal above its base is 3m. (6)		}	
	<i>.,</i>	Differentiate between raster and vector data models in GIS. Provide one example of			
Н	A	spatial data best suited for each model. (4)			
	^	Explain how data is captured and integrated into a GIS. Discuss a spatial analysis	20	1,2,3,4	1,2,3
		technique used in GIS and illustrate how GIS can be applied in surveying or geomatics with one example. (6)			
ŀ	В	Compare Differential CDS (DCDS) 1 2 1 21			
		Compare Differential GPS (DGPS) and Real-Time Kinematic (RTK) surveying.			
	C	Discuss their differences in accuracy and applications. (4)			
		Describe the complete procedure for setting out a rectangular building on a			
		construction site. Explain how right angles are established and how the accuracy of			
}	D	the layout is verified before excavation. (6)			
	ו	Explain how vector data can be classified, categorically or graduated, in a GIS. Give proper example. (4)			
+	A				
	^	Explain with the help of a diagram different earth surfaces and explain how the ellipsoid and the geoid differ. (4)	20	1,2,3,4	1,2,3
-	В	Explain the gendert of real-time left of the left of t			
	"	Explain the concept of geodetic latitude and longitude and explain how they differ from geographic latitude and longitude. (4)			
+	C				
ŀ	D	Explain, with proper sketch, the working principle of GPS. (4) The scale of an acriel photograph in language of the scale			
	"	The scale of an aerial photograph is 1cm=100m. The photograph size is 20cm x			
		20cm. The longitudinal lap is 60% and side lap is 30%. Determine the number of photographs required to cover:			
		1. An area of 100 sq.km (3) 2. An area of 10km x 10km (3)			
+	A	Is there any difference in the number of photographs in both the cases? Justify. (2)			
	^	List the different types of vertical curves used in geometric design. Briefly explain	20		
-	D	the conditions under which these curves are preferred. (4)			
	B	Explain the concept of 'strength of figure' in triangulation networks. (4)			
	1				



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

	С	Two points A and B hav appear on the vertical ph 2500m above datum. Th	notogra	ph having foc	al length of 20cr	n and flying altitude of			
					c Co-ordinates				
			Point	x (cm)	y (cm)				
			a	+2.65	+1.36		111		
1			b	-1.92	+3.65				
	ļ '	Determine the length of	f the gr	ound line AB	. (4)				
	D	Explain the concept of decision-making. (4)	f geo-r	eferencing. I	Explain how spa	atial analysis helps in			
	E	Explain: Receiver clock	error a	and Selective	availability in G	PS. (4)			
3	A	Describe the procedure method. (4)	for se	tting-out-a v	rertical curve us	ing the chord gradient	- 20	-1,2,3,4	1,2,3
	В	List and briefly explain trilateration networks as	•						
	C	Explain the principles radiation (EMR) and wa		_	_				
	D	Explain how GIS is dif proper example. (4)	ferent t	han any othe	r Computer aide	d Design system with a			
	E	Explain any two applies studies, Solid Earth studies				ving domains: Oceanic pheric studies. (4)			

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END-SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

Program: Civil engineering Jun 14

Duration: 3 hours

Course Code: PC-BTC403

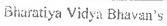
Maximum Points: 100

Course Name: Surveying & Geomatics

Semester: IV

Instructions:

1. Question No. 1 is compulsory.


2. Attempt any four questions from the remaining six questions.

3. Begin the answer to each main question on a new page.

4. Support your answers with appropriate figures and tables, wherever applicable.

5. Do not use pencil for writing answers. Only pen is permitted.

Q	no.	Question	Dainte	00	70.0
1		 A. Differentiate between a circular curve and a transition curve. Explain the objectives of providing transition curves on highways or railways. (4) B. Ilustrate with a diagram the difference between the geoid and ellipsoid. Explain why the geoid is considered a more accurate representation of mean sea level. (3) C. State the basic concept of trilateration. Explain how distance is measured in this method. (3) D. A vertical photograph taken at an altitude of 1200m above mean sea level. Determine the scale of the photograph for terrain lying at an elevation of 80m and 300m if the focal length of the camera is 15cm. (3) E. Describe the three main segments of the Global Positioning System (GPS) and explain the function of each segment in ensuring accurate positioning. (3) F. Define Geographic Information System (GIS) and explain the fundamental components of GIS. (2) G. State the main objectives of construction surveying. (2) 	20	1,2,3,4	1,2,3
2	A	A parabolic vertical curve is to be set out connecting a falling gradient of -1.8% with a rising gradient of +1.2%. The chainage and reduced level of point of intersection are 1200m and 250m respectively. The length of the curve is 100m. Calculate the chainages (1), and reduced level of the various station pegs by tangent correction method (6) with proper sketch showing all elements (1).	20	1,2,3,4	1,2,3

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END-SEM/RE-EXAM EXAMINATION -MAY/JUNE 2025

	-				
	В	Describe the role of signals and towers in triangulation and trilateration		T	1
		surveys. Explain with sketches, the different types of signals and towers			
		used. (6)			
	C	State the elements of aerial image interpretation and explain any three			
		elements in detail, with proper examples. (6)			
3	A	Explain the necessity of providing horizontal circular curves in road or	20	1224	100
	ļ	railway alignment. With the help of a neat sketch, describe the geometric	20	1,2,3,4	1,2,3
		elements of a simple circular curve. (6)			
	В	Differentiate between Quantitative and Qualitative thematic maps. (4)			
	$\overline{\mathbf{C}}$	To determine the elevation of the top (Point T) of a tower on a hill,			
		observations were made from two instrument stations, A and B, which			
		are 120 m apart, and aligned with T. The angles of elevation to the top		•	}
ļ		of the tower from A and B were observed to be 30°15′ and 20°10′			
		respectively. The staff readings on a benchmark (BM) of elevation			
ļ		312.45 m were found to be 2.610 m from A and 3.430 m from B, with			
		the telescope kept horizontal. Calculate the elevation of the base of the			
		tower, given that the height of the tower above its base is 4.2 m. (6)		1	}
	D	Compare Static GPS and Differential GPS (DGPS) (RTK) surveying.			
		Discuss their differences in accuracy and applications. (4)			1
4	A	State and explain the spatial data and non-partial data		<u> </u>	
1		State and explain the spatial data and non-spatial data types in a GIS with proper examples. (6)	20	1,2,3,4	1,2,3
-	В				
}	C	Compare active and passive GPS tracking. (4)			
}		Explain the step-by-step procedure for setting out a rectangular building			
		on a construction site. Include the role of reference points and right-			
-	- <u>-</u>	angle methods in ensuring accuracy. (6)			
	D	Explain how GIS can be helpful for spatial analysis and mapping. Give			
		proper example. (4)			
5	A	Explain the concept of map projection. Explain why distortions occur in	20	1,2,3,4	1,2,3
		map projection. (4)		','	-,-,-
- 1	В	List the main parameters used to define a reference ellipsoid. Name two			
		commonly used ellipsoid models in geodesy and mention their regions			
		of applicability. (4)			
	C	Explain "GPS Signal characteristics and operational concepts". (4)			
	a	i. The scale of an aerial photograph is 1cm=100m. The photograph			
		size is 20cm x 20cm. The longitudinal lap is 60% and side lap is			
		30%. Determine the number of photographs required to cover an			
		area of 8km x 12.5km. (3)			
		The state of the s			ge 2 of

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END-SEM/RE-EXAM EXAMINATION -MAY/ JUNE 2025

		ii. State the elements of aerial image interpretation and explain any	·	 	
	[four elements in detail. (5)			
6	A	Compare the Tangent Correction Method and the Chord Gradient	30		
		Method used for setting out vertical curves. Highlight the differences	20		
		with respect to at least four parameters such as reference line, calculation			
		steps, ease of field application, and accuracy. (4)			
	В	Discuss how the geometry of a triangle or network configuration affects			
		the accuracy of position fixing. (4)			
	C	Derive the expression for relief displacement of a point on an aerial			
		photograph due to its elevation above datum. Clearly state the			
		assumptions involved and explain the significance of each term in the			
		final formula. (4)			:
	D	Explain the role of GIS in surveying. Give two examples of GIS in Civil			
		Engineering. (4)			
	E	Discuss the typical co-ordinate reference systems (CRS) used for Static,			
		DGPS, and RTK GPS and its application. (4)			
7	A	Derive the expression for tangent correction in a vertical curve. Clearly			
		define the geometric significance of each parameter used in the	20	1,2,3,4	1,2,3
		derivation. (4)			
ļ	В	Describe at least two types of figures commonly used in triangulation or			!
		trilateration networks, and evaluate their relative merits in terms of			
		strength and stability. (4)			
	C	Compare (at least 4 points) ground based, air borne, and space borne			
		remote sensing methods. (4)			
Ì	D	State the advantages and limitations of an Open source GIS			
		environment. (4)			
ľ	E	Explain Multipath error and Ionospheric error in GPS. (4)			
		Total and Total Principle Of the Int Of S. (4)			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RECEIV. EXAMINATION MAY/JEEE 2024-25

Program: S.Y. B. TECH

Course Code: PC-BTC-404

Course Name: HYDRAULIC ENGINEERING

Duration: 03 Hrs.

Maximum Points: 100

Semester: IV

23/3/28

Notes:

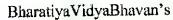
Attempt any five questions.

Answer to all sub questions should be grouped together.

Figure to right indicates full marks.

• Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	СО	BL	Module
NO.	(a) What do you mean by hydraulic model testing? Explain in brief. Derive the dimensions of force, bulk modulus of elasticity, momentum, torque and bending moment.	10	1	2	1
1	(b) The head loss due to friction 'hf' in a pipe depends upon diameter of pipe 'D', friction factor 'f', length of pipe 'L' and rate of flow through pipe 'Q'. Obtain an expression for loss of head using any method of dimensional analysis.	10	2	4	1
	(a) Explain with neat sketches; (i) Working of siphon; (ii) HGL and TEL for three pipes of different diameters and lengths connected in series	10	2	3	2
2	(b) A 25 cm wrought iron pipeline 750 meter long discharges water 125 meter below the surface of a reservoir. Determine the diameter of the nozzle which will deliver the maximum power. Assume f = 0.022 and coefficient of velocity of the nozzle is 0.96.	10	2	3	2
	(a)Explain water hammer theory and obtain an expression for the rise in pressure in a thin elastic pipe of circular section in which the flow of water is stopped by sudden closure of valve.	10	2	2	3
3	(b) A valve is provided at the end of a cast iron pipe of diameter 15 cm and of thickness 10 mm. Water is flowing through the pipe, which is suddenly stopped by closing the valve. Find the maximum velocity of water, when the rise of pressure due to sudden closure of valve is 200 x 10 ⁴ N/m ² . Take bulk modulus (K) for water as 19.62 x 10 ⁸ N/m ² and elasticity modulus (E) for cast iron as 11.75 x 10 ¹⁰ N/m ² .	10	2	4	3


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-ENDM. EXAMINATION MAY/JUNE 2024-25

4	(a) Prove that the force exerted by a jet of water on a stationery semi-circular vane in the direction of the jet when the jet strikes at the center of the semi-circular vane is two times the force exerted by the jet on the stationery flat plate.	10	2	4	4
	(b) A jet of water of diameter 45 mm. strikes a fixed plate in such a way that the angle between the plate and the jet is 30°. If the force exerted in the direction of the jet is 1600 N, determine the rate of flow of water.	10	2	4	4
	(a)Differentiate between impulse turbine and reaction turbine, and derive an expression for hydraulic efficiency of a Pelton wheel turbine.	10	2	4	4
5	(b) In an inward flow reaction turbine the diameter at inlet and outlet are 1.20m and 0.60 m. The hydraulic efficiency = 92%. Head = 45m. The velocity of flow at outlet = 2 m/sec. The discharge at outlet is radial. The vane angle at outlet is 150. Flow width is 0.10 m. at inlet and outlet. Determine (i) the guide blade angle (ii) vane angle at inlet	10	2	4	4
	(a)Write short notes on: (any two) (i)Priming and minimum starting speed of a centrifugal pump. (ii) Pumps in parallel, series and multistage pumps (iii)Manometric head and efficiencies of centrifugal pump.	10	2	4	5
6	(b) The outer diameter of an impellor of a centrifugal pump is 45 cm and outlet width 5 cm. The pump is running at 975 r.p.m. and is working against a total head of 35 meter. The vane angle at outlet is 40 degrees and manometric efficiency is 82%. Determine; (i) velocity of flow at outlet; (ii) velocity of water leaving the vane; and (iii) angle made by the absolute velocity at outlet.	10	2	4	5
	(a)Derive: conditions for most economical rectangular channel section.	05	2	3	3
	(b) Draw and explain specific energy curve.	05	2	3	2
7	(c)Establish a relationship between Chezy's C and Manning's N.	05	2	3	3
	(d) Determine the most economical trapezoidal channel section with side slope of 2H: 1V carrying a discharge of 12 cum/sec with a velocity of 0.85 meter/sec. Also determine the bed slope for this channel. Take Manning's 'n' = 0.025.	05	2	3	4

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM. EXAMINATION MAY/JUNE 2024-25

Program: S.Y. B. TECH Civil Dem?

Course Code: PC-BTC-404

Course Name: HYDRAULIC ENGINEERING

Duration: 03 Hrs.

Maximum Points: 100

Semester: IV

216/25

Notes:

Attempt any five questions.

Answer to all sub questions should be grouped together.

• Figure to right indicates full marks.

• Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	СО	BL	Module
	(a) What do you mean by hydraulic model testing? Explain in brief. Also explain scale effects in hydraulic model testing including distorted and undistorted models.	10	1	2	1
1	(b)Obtain dimensionless parameters for the thrust (T) of a screw propeller of diameter 'D', moving with angular velocity 'ω' in a liquid of density 'ρ', and viscosity 'μ'. The speed of rotation is N. Use Buckingham's-π method.	10	2	3	1
	(a) Show that: for a maximum power transmission through pipe of diameter 'D' connected with nozzle having diameter 'd': (i) the head loss (h_f) is one third of the total head at inlet (H) ; and (ii) Find nozzle diameter (d). Take; $f = friction$ factor, and $L = length$ of the pipe.	10	2	3	2
2	(b) Three pipes connected in series discharges water from 90 meter level to 30 meter level. The lengths of pipes are 900m, 950m, 1250 m, diameters are 35 cm, 20 cm, 30 cm and friction factors are 0.022, 0.019, 0.020 respectively. Considering minor losses: determine discharge, velocity and head loss in each pipe.	10	2	3	2
	(a) What is mean by water hammer? Obtain an expression for the rise in pressure in a thin elastic pipe of circular section in which the flow of water is stopped by sudden closure of valve.	10	2	2	3
3	(b) A siphon of length 850 m has its vertex 7 meters above the water level in the upper reservoir. The length of inlet leg of siphon is 200 m and total head loss in siphon is 25 m. Determine the diameter of the siphon such that pressure at summit do not fall below vapour pressure of water. Take f = 0.022.	10	2	4	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai — 400058

ENDERM/RE-EXAM. EXAMINATION MAY/JUNE 2024-25

	(a) Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel can never exceed 50%.	10	2	4	4
4	(b)A 40 m/sec velocity jet of water strikes without shock on a series of vanes moving at 10 m/sec. The jet is inclined at an angle of 220 to the direction of motion of vanes. The relative velocity of jet at outlet is 0.80 times the value at inlet and the flow is radial. Determine: (i) Vane angle at entrance and exit; (ii) Work done on vanes per second per unit weight of water; and (iii) Hydraulic efficiency.		2	3	4
	(a)Explain working of hydraulic turbine with a neat sketch, Differentiate between impulse turbine and reaction turbine, and define hydraulic efficiency, mechanical efficiency and overall efficiency.	10	2	4	4
5	(b) A Pelton wheel has a mean bucket speed of 10 m/sec and is supplied with water at a rate of 750 liters per second under head of 45 meter. If the bucket deflects the jet through an angle of 160°, find the power developed by the turbine and its hydraulic efficiency. Take the coefficient of velocity as 0.98. Neglect friction in the bucket. Also determine the overall efficiency of the turbine if its mechanical efficiency is 82%.	10	2	4	4
	(a)Write short notes on: (any two) (i) Minimum starting speed of a centrifugal pump. (ii) Pumps in parallel, series and multistage pumps (iii) NPSH and Cavitation in centrifugal pump	10	2	4	5
6	(b) A centrifugal pump lifts water under a static lift of 45 meter of which 5 meter is suction lift. The suction and delivery pipes both are 20 cm in diameter. The friction loss in suction pipe is 3 meter and in delivery pipe it is 5 meter. The impeller is 50 cm in diameter and 30 mm wide at outlet and runs at 1000 rpm. The exit blade angle is 22 degrees. If the manometric efficiency of the pump is 85 %, Determine: (i) Discharge from a pump; and (ii) Pressure at the suction and delivery ends of the pump.	10	2	4	5
	(a)Discuss types of flow in open channel	05	2	3	3
7	(b)Explain most economical trapezoidal channel section	05	2	3	$\frac{3}{2}$
	(c)Draw and explain specific energy curve	05	2	3	3
	(d)Calculate the maximum discharge through a rectangular channel having depth 3m, bed slope of 1 in 1000 and C = 60.	05	2	4	4
	施夫夫女法國衛軍衛女士法軍軍至方大士等軍事大 ** ** * * * * * * * * * * * * * * * *				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/DE-EXAM EXAMINATION -MAY/JUNE 2025

Program: Civil engineering

Course Code: MI-BT031

S. Y. C() Lun Duration: 3 hours

Maximum Points: 100

26/5/20

Course Name: Introduction to Sust. & Sust. Development

Semester: IV

Notes:

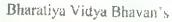
1. Question no.1 is compulsory

2. Attempt any FOUR Questions from remaining SIX questions.

3. Start every MAIN question from a new page.

4. Answers should be accompanied with proper figures and tables, wherever necessary.

Q.no.	Question	Points	CO	BI
1	Answer the following. (Any four)	20	1	1,2
	a) Discuss the role of community engagement in achieving social sustainability. (5)			
	b) State and explain the major challenges in implementing eco- development strategies. (5)			
	c) Explain how the Sustainable Development Goals (SDGs) guide international cooperation for sustainability. Illustrate with an example of how one SDG can be implemented at the national level. (5)			
	d) State and explain the role of institutional theory in sustainable development. (5)			
	 e) Explain the term embodied carbon and embodied energy. (5) f) Explain the concept of net zero energy building and how is it different from a green building. 			
2	 a) Discuss the significance of international environmental agreements in promoting economic sustainability. (10) b) Explain the concept of green building and how is it beneficial. Also, explain any one standard available to certify green building. (10) 	20	1,2,3	2,3
3	a) Explain the concept of a green economy and its relevance to climate change policies. (10)	20	1,2,3	2,3


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION -MAY / JUNE 2025

	b) Explain embodied carbon, Global Warming Potential, greenhouse gases and CO2eq. (10)	71E 21		<u> </u>
4	 a) Evaluate the effectiveness of integrated resource management in ensuring long-term sustainability. (10) b) Describe various sustainability assessment methods. (10) 	20	2,3,4	2,
5,	 a) Evaluate the obligations and responsibilities of developed nations in fostering global sustainable development. Support your answer with international agreements and policies. (10) b) Discuss Water Pollutants and ways to treat them. (10) 	20	2,3	2,3
6	 a) Explain how rural and urban development contributes to the path of sustainable development in India. (10) b) Explain a case-study for reuse and recycle of wastewater with flowsheet and critique on it. (10) 	20	3,4	1,2
7	Present a case study in the form of a report that demonstrates the sustainability aspect of either material, food, water, energy, or a building. Analyze the key sustainability practices involved, and create recommendations to improve or replicate the model in other contexts. (20)	20	3,4	2,3
	Or			
	Select any one of the following real-world scenarios and present a detailed case study analysis: (20)			
	i. Urban slum development and social cohesion ii. Industrial expansion vs. environmental sustainability iii. Renewable energy investments and economic trade-offs iv. Gender-inclusive economic policies v. luternational trade agreements and poverty reduction			

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

30/19/20

END SEM/RE-EXAM EXAMINATION -MERY / JUNE 2025

Program: Civil engineering Lun IV

Duration: 3 hours

Course Code: MI-BT031

Maximum Points: 100

Course Name: Introduction to Sust. & Sust. Development

Semester: IV

Notes:

1. Question no.1 is compulsory

2. Attempt any FOUR Questions from remaining SIX questions.

3. Start every MAIN question from a new page.

4. Answers should be accompanied with proper figures and tables, wherever necessary.

Q.no.	Question	Points	CO	BI
l	Answer the following. (Any four)	20	I	1,2
	 a) Define social sustainability and explain its importance in modern society. (5) b) Explain the importance of eco-development programmes in anxironmental association (5) 			
	environmental conservation. (5) c) Define sustainable development. Briefly explain the contribution of the Brundtland Report and the Rio Summit in shaping the global understanding of sustainability. (5)			
	d) Compare Kyoto Protocol and Paris Agreement, (5)			
	e) Explain Greenhouse gas emissions and Global Warming Potential. (5)		İ	
	f) Explain how an existing building can be converted to green building with respect to material and energy criteria. (5)			
2	a) Analyze the social issues that hinder sustainability, such as gender inequality, poverty, and environmental degradation. Evaluate how community engagement and empowerment can address these challenges and promote social sustainability performance. (10)	20	1,2,3	2,3
	b) Explain with a case study concept of green building (GRIHA, IGBC or LEED). (10)			

Bharatiya Vidya Bhavan ::

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar. Andheri (W) Mumbai - 400058

ENDSEM/RE-EXAM EXAMINATION -MAY/ JUNE 2025

3	a) How do democratic institutions support social sustainability? Provide examples. (10) b) State and explain the three market based - flexibility mechanism of Kyoto protects (10)	20	1,2,	3 2,3
4	mechanism of Kyoto protocol. (10) a) Analyze the role of public participation in shaping environmental policies. (10) b) Enlist tools to measure sustainability. Explain any three which you find most appropriate for measurement. (10)	20	2,3,4	2, 3
5	 a) Evaluate how developed countries contribute to sustainable development through policy frameworks. (10) b) Explain your carbon footprint in a day. Explain the procedure for the same. (10) 	20	2,3	2,3
6	 a) Explain concept of LCA and LCA thinking. Explain how it is useful for sustainability. (10) b) Discuss International Action Plans for sustainable development: their purpose and key instruments. (10) 	20	3,4	1,2
	Present a case study in the form of a report that demonstrates the sustainability aspect of either material, food, water, energy, or a building. Analyze the key sustainability practices involved, and create recommendations to improve or replicate the model in other contexts. (20)	20	3,4	2,3
1	Or			
	Select any one of the following real-world scenarios and present a detailed case study analysis: (20)			
	 i. Urban slum development and social cohesion ii. Industrial expansion vs. environmental sustainability iii. Renewable energy investments and economic trade-offs iv. Gender-inclusive economic policies v. International trade agreements and poverty reduction 			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

RE-EXAM/END-SEMESTER EXAMINATION (MAY-JUNE 2025)

Program: Civil Engineering

Duration: 3 Hr.

Course Code: PC - BTC - 405

Maximum Points: 100

Course Name: Transportation Engineering

Semester: IV

Notes:

i. Q.1. is compulsory

ii. Solve any four questions out of remaining six questions

iii. Assume suitable data if required

Q.No.	Questions	Point	СО	BL
Q.1		 		
<u>``</u> a	What is rail? Discuss with neat sketch different types of rail	08	02	01
b	What do you meant by creep of rail? How will you measure it?	08	02	01
С	State the assumption made while calculating the basic length of Runway	04	01	01
Q.2				T
a	What is exit taxiway? Draw the neat sketch of exit taxiway connecting runway and parallel taxiway. Also discuss How you will apply the elevation correction for its location.	10	01	01
b	Discuss the requirement of railway station with respect to following points. (i) Passenger requirement (ii) staff requirement (iii) locomotive requirement (iv) train requirement	10	02	01
Q.3				<u> </u>
a	Write short notes on i. Cross wind component and its limiting values ii. Wind coverage iii. Calm period	06	01	
b	Discuss with sketch How you will plan the orientation of Runway Considering Direction and total duration.	07	01	02
С	How will you calculate the Basic Length of Runway	07	01	02
Q.4				
a	What is gradient? Explain following types of gradient i. Rulling gradient ii. Momentum gradient iii. Pusher gradient	08		
	Describe arous sections of six latitudes	ļ	02	01
b	Draw the cross section of single line railway track in embankment. Label all its component parts.	06	02	02
С	What is uniformity of gauge? List out its advantages	06	02	02

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

RE-EXAM/END-SEMESTER EXAMINATION (MAN - JUNE 2025)

~ ~						· · · · · · · · · · · · · · · · · · ·	T	,	T
Q.5	YY 75	0 D:	'4 C				00	00	01
<u>a</u>				ction and req			08	02	01
b	State the advantages and disadvantages of wooden sleepers								01
C	Write short notes on sleeper density							02	01
Q.6									<u> </u>
a				how all the de			06	01	02
b				off climb sur			06	01	02
	Design the exit taxiway joining the runway and parallel main							01	
c	taxiway. The total angle of turn is 30 degree and exit speed is 95								
	km/hr. also, Draw the neat sketch showing all design elements								03
Q.7									
	Estimate the	cost req	uired for co	nstruction of	l km long	single line			
			eeper densit	y of (n+5). U	se the folk	owing data			
	for cost estimation.								
	Cost of rail = 210 Rs./kg								
	Cost of ballast including transportation = 500 Rs./m ³								
	Cost of time	er sleep	er = 800 Rs	/ m ³					
a	Cost of fish						10		
	Cost of fish						}	1	
		- 30 %	of the cost o	f material.					
	Given;								1
	Volume of ballast = 1.08 m ³ /m								
	Width and depth of formation 5.5 m and 0.3 m							00	02
	Volume of one sleeper = 0.08855 m ³						 	02	03
	The length of runway under standard condition is 2200 m. the airport								
	is to construct at an elevation of 380 m above mean sea level. The								
	gradient is to be provided along the alignment of runway is shown in							ļ	
	table below. The monthly mean of average daily temperature and the								[
	monthly mean of maximum daily temperature for hottest month of year is 40.4 and 50.60 degree respectively. Apply the correction as per ICAO and FAA recommendation and calculate the corrected length of							1	
									İ
									ļ
	runway.								
b			2004-	1200 to	1800 to	2400	10		1
	End to	0 to	300 to	1800 m	2400 m	to 3500			
	end	300 m	1200 m	1900 III	2400 III	í l	ļ	Ì	
	1 1	runway m							
	length	0.75	1005	+ 0.5	- 0.60	- 0.30			
	Gradient,	+ 0.75	+ 0.25	T 0.3	- 0.00	- 0.30			
	(%)		<u> </u>		İ				1
							i	l .	